Total Synthesis of Aspercyclides A and B via Intramolecular Oxidative Diaryl Ether **Formation**

ORGANIC LETTERS 2012 Vol. 14, No. 16 4290-4292

Tatsuva Yoshino.[†] Itaru Sato.^{*,‡} and Masahiro Hirama[†]

Department of Chemistry and Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

isato@m.tohoku.ac.jp

Received July 17, 2012

A highly efficient total synthesis of the 11-membered cyclic aspercyclides A (1) and B (2) has been achieved by chemo- and regioselective intramolecular oxidative C-O bond formation from differently substituted diphenols.

In 2004, Singh and co-workers isolated and characterized aspercyclides A (1), B (2), and C from the fermentation broth of *Aspergillus* sp.¹ Aspercyclide A (1) inhibited the binding of immunoglobulin E antibodies (IgE) to the human IgE receptor. Therefore, compound 1 and its analogues are expected to act on allergic disorders.¹ These noble compounds consist of an 11-membered unsaturated lactone flanked by differently substituted diaryl ether backbones. The first synthesis of (+)aspercyclide C was reported by Fürstner et al. in 2005.^{2,3} They constructed the 11-membered ring via ring-closing metathesis (RCM). In 2009, they synthesized (+)-aspercyclides A (1) and B (2) more effectively using an intramolecular Nozaki-Hiyama-Kishi (NHK) reaction.³ Spivey et al. reported a synthesis of (\pm) -aspercyclide A (1) via an intramolecular Mizoroki–Heck reaction in 2010.⁴ We describe herein a total synthesis of pure (+)-aspercyclides A (1) and B (2) via

(1) Singh, S. B.; Jayasuriya, H.; Zink, D. L.; Polishook, J. D.; Dombrowski, A. W.; Zweerink, H. Tetrahedron Lett. 2004, 45, 7605.

Scheme 1. Retrosynthesis of Aspercyclides A (1) and B (2)

chemo- and regioselective intramolecular oxidative diaryl ether formation.

Aspercyclides A (1) and B (2) were envisioned to be constructed via an intramolecular oxidation of diphenol 3 as the most challenging key step of this synthesis (Scheme 1).

[†] Department of Chemistry.

^{*} Research and Analytical Center for Giant Molecules.

⁽²⁾ Fürstner, A.; Müller, C. *Chem. Commun.* 2005, 5583.
(3) Pospišil, J.; Müller, C.; Fürstner, A. *Chem.*—*Eur. J.* 2009, *15*, 5956.

^{(4) (}a) Carr, J. L.; Offermann, D. A.; Holdom, M. D.; Dusart, P.; White, A. J. P.; Beavil, A. J.; Leatherbarrow, R. J.; Lindell, S. D.; Sutton, B. J.; Spivey, A. C. Chem. Commun. 2010, 1824. (b) Carr, J. L.; Sejberg, J. J. P.; Saab, F.; Holdom, M. D.; Davies, A. M.; White, A. J. P.; Leatherbarrow, R. J.; Beavil, A. J.; Sutton, B. J.; Lindell, S. D.; Spivey, A. C. Org. Biomol. Chem. 2011, 9, 6814.

The diphenol **3** would be assembled from **4**–**6**. The enantiomerically pure diol derivative **4** was prepared from **7** via Sharpless epoxidation with D-(–)-diisopropyl tartrate (DIPT)⁵ and protection as the benzyl ether, ^{5f,g} followed by treatment with *n*-BuLi and CuI (I)⁶ (1:1.2) in 86% yield (three steps, Scheme 2). Salicylic acid **8** was converted to **10** (71%, two steps),⁷ which was then transformed to both of the key phenol fragments **5** (88%, three steps) and **6** (92%).⁸

With the key fragments in hand, we then turned to their assembly. Mizoroki–Heck reaction of **4** with aryl iodide **5** in the presence of diazabutadiene ligand **11** gave **12** (Scheme 3).^{4a,9} Esterifying the alcohol **12** with salicylic acid derivative **6** furnished ester **13**.¹⁰ The acetonide group of **13** was hydrolyzed and TBS-protected, followed by selective deprotection of two of the three TBS groups to produce the diphenol **3**.

- (7) Clososki, G. C.; Rohbogner, C. J.; Knochel, P. Angew. Chem., Int. Ed. 2007, 46, 7681.
- (8) Herbert, J. M. Tetrahedron Lett. 2004, 45, 817.

Scheme 3. Total Synthesis of Aspercyclides A (1) and B (2)

Next was the phenolic oxidation of **3**, which is the most critical and dangerous step, to realize the aryl C–O bond. In fact, oxidizing reagents such as $K_3Fe(CN)_6$,¹¹ CAN,¹² and [bis(trifluoroacetoxy)iodo]benzene (PIFA)¹³ did not afford the desired product **14**. However, we were very pleased to find that 3 mM of **3** with 1.0 molar equiv of (diacetoxyiodo)benzene [PhI(OAc)₂] and 3.0 molar equiv of K₂CO₃ in EtOH at room temperature gave rise to the desired diaryl ether **14** as the sole product in high yield (90%). Selection of the reaction solvent turned out to be critical; when either CH₃CN, CF₃CH₂OH, or THF was used, diphenol **3** quickly decomposed. MeOH gave only a small amount of **14**. The exclusive formation of **14** can be

^{(5) (}a) Romero, A.; Wong, C.-H. J. Org. Chem. 2000, 65, 8264.
(b) Jager, V.; Schroter, D.; Koppenhoefer, B. Tetrahedron 1991, 47, 2195. (c) Schreiber, S. L.; Schreiber, T. S.; Smith, D. B. J. Am. Chem. Soc. 1987, 109, 1525. (d) Katsuki, T.; Martin, V. S. In Organic Reactions; Paquette, L. A., Ed.; Wiley: New York, 1996; Vol. 48, pp 1–300. (e) Jager, V.; Stahl, U.; Hummer, W. Synthesis 1991, 776. (f) Crimmins, M. T.; Ellis, J. M.; Emmite, K. A.; Haile, P. A.; McDougall, P. J.; Parrish, J. D.; Zuccarello, J. L. Chem.—Eur. J. 2009, 15, 9223. (g) Atsuumi, S.; Nakano, M.; Koike, Y.; Tanaka, S.; Funabashi, H.; Hashimoto, J.; Morishima, H. Chem. Pharm. Bull. 1990, 38, 3460.

^{(6) (}a) Sabitha, G.; Gopal, P.; Yadav, J. S. Synth. Commun. 2007, 37, 1495. (b) Simpson, T. J.; Smith, R. W.; Westaway, S. M.; Willis, C. L. Tetrahedron Lett. 1997, 38, 5367.

⁽⁹⁾ Grasa, G. A.; Singh, R.; Stevens, E. D.; Nolan, S. P. J. Organomet. Chem. 2003, 687, 269.

^{(10) (}a) Bhattacharjee, A.; De Brabander, J. K. *Tetrahedron Lett.* **2000**, *41*, 8069. (b) Wang, X.; Porco, J. A., Jr. *J. Am. Chem. Soc.* **2003**, *125*, 6040. (c) Shen, R.; Inoue, T.; Forgac, M.; Porco, J. A., Jr. *J. Org. Chem.* **2005**, *70*, 3686.

⁽¹¹⁾ Abakumov, G. A.; Cherkasov, V. K.; Nevodchikov, V. I.; Druzhkov, N. O.; Fukin, G. K.; Kursky, Y. A.; Piskunov, A. V. *Tetrahedron Lett.* **2005**, *46*, 4095.

⁽¹²⁾ Kotoku, N.; Tsujita, H.; Hiramatsu, A.; Mori, C.; Koizumi, N.; Kobayashi, M. *Tetrahedron* **2005**, *61*, 7211.

⁽¹³⁾ Tamura, Y.; Yakura, T.; Haruta, J.; Kita, Y. J. Org. Chem. 1987, 52, 3927.

^{(14) (}a) Moriarty, R. M.; Prakash, O. In *Organic Reactions*; Paquette, L. A., Ed.; Wiley: New York, 2004; Vol. 54, pp 273–418. (b) Moriarty, R. M.; Prakash, O. In *Organic Reactions*; Paquette, L. A., Ed.; Wiley: New York, 2004; Vol. 57, pp 327–415.

Scheme 4. Proposed Mechanism

explained as shown in Scheme 4. In EtOH, $PhI(OAc)_2$ should form $PhI(OEt)_2$,^{14a} which may act as an appropriately mild two-electron oxidizing reagent to selectively oxidize the more electron-rich phenol unit of **3**.^{14b,15,16} The carbon chains of the reaction intermediate **16a**

(15) (a) Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; Caemmerer, S. B.; Kita, Y. *Angew. Chem.*, *Int. Ed.* **2008**, 47, 3787. (b) Pelter, A.; Ward, R. S. *Tetrahedron* **2001**, 57, 273. (c) Kürti, L.; Herczegh, P.; Visy, J.; Simonyi, M.; Antus, S.; Pelter, A. J. Chem. Soc. Perkin Trans. 1 **1999**, 379.

(16) When a 1:1 mixture of **18** and **19** was treated with $PhI(OAc)_2(1.0 \text{ molar equiv for the mixture})$ in ethanol for 2 h as the control experiments, **18** was completely consumed, while **19** was untouched. Furthermore, CAN (1.0 molar equiv, 30 min) oxidation of the mixture showed a complete decomposition of both **18** and **19**. These results clearly indicated that $PhI(OAc)_2$ can differentiate the two distinct phenol units.

(aryloxyiodonium (III) species) or **16b** (aryloxenium ion)¹⁵ may adopt a zig-zag conformation in the most favorable transition state, in which the phenoxide oxygen of the untouched phenol would attack the nearby oxidized phenol, leading to the intermediate **17** followed by aromatization to **14**.

Completion of the total synthesis of (+)-aspercyclide B (2) required only cleavage of the protecting groups of 14 with TBAF at 0 °C followed by treatment with BCl₃ at -78 °C (86%, two steps). Our total synthesis of (+)-2 was accomplished in 13 steps in the longest linear sequence (22% overall yield from 8). The total synthesis of pure (+)-aspercyclide A (1) required the oxidation of benzyl alcohol 15 with MnO₂, followed by treatment with BCl₃ at -78 °C in 83% yield (two steps). For the first time, pure synthetic (+)-1 was isolated. We found that compound 1 is stable enough for flash chromatography.³ Spectroscopic data of the synthetic (+)-1 and (+)-2 are completely identical to those of natural aspercyclide A¹ and Fürstner's synthetic aspercyclide B,^{3,17} respectively.

In summary, we accomplished the total synthesis of pure (+)-aspercyclides A (1) and B (2) with complete control of chemo-, stereo-, and regioselectivities. In particular, we would like to emphasize the efficient chemo- and regioselective assembly of the diaryl ether linkage in the 11-membered ring skeleton through the intramolecular oxidation of the diphenol segments. This synthetic strategy will be readily applicable to the syntheses of other diaryl ether natural¹⁸ and designed bioactive molecules. Related synthetic studies are currently under investigation in our laboratory.

Acknowledgment. This work was supported financially by a Grant-in-Aid for Specially Promoted Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan.

Supporting Information Available. Experimental procedures and spectroscopic data for synthetic compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

(18) (a) Pitsinos, E. N.; Vidali, V. P.; Couladouros, E. A. *Eur. J. Org. Chem.* **2011**, 1207. (b) Ueda, K.; Sato, I.; Hirama, M. *Chem. Lett.* **2012**, *41*, 87.

⁽¹⁷⁾ The ¹H NMR spectrum of 2 was highly concentration dependent as indicated by Fürstner et al. See ref 3.

The authors declare no competing financial interest.